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Abstract

Nonlinear Time Series Analysis is a versatile field that has yet to realize its complete potential. NTSA
has been extensively used in Finance and Medicine, but not as much in the natural sciences, such as climate
sciences. This paper attempts to answer the question ”What is nonlinear time series analysis and how
is it used in modeling climate variability and other such phenomena?” We begin with the foundations of
NTSA and introduce some common techniques. Then, we highlight prominent applications of NTSA in
current climate modeling such as the El Niño Southern Oscillation and Ozone layer depletion. We also
discuss the predictive capabilities and shortcomings of various models. Finally, this paper offers the reader
an introduction to seminal works, ongoing research, and problems to further explore. A reader can expect to
gain familiarity with important concepts in the field and understand their potential applications in problems
around the world.
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1 Introduction

1.1 Background and History of Nonlinear Time Series Analysis

Nonlinear Time Series Analysis (NTSA) has emerged as a transformative approach to studying complex dynam-
ical systems, offering insights into diverse fields ranging from physics to economics. The history of NTSA traces
back to the work of the French mathematician Henri Poincaré, who, in the late 1800s, explored the dynamics
of celestial bodies within the context of his three-body problem. The Poincaré three-body problem refers to
the challenge of accurately predicting the future positions and motions of three celestial bodies, such as planets
or stars, which exert gravitational forces on each other [Bar97]. Poincaré’s discoveries laid the foundation for
chaos theory, a pivotal component of NTSA. However, it was not until the latter half of the 20th century that
NTSA truly gained momentum, driven by advances in computational technology and a growing recognition of
its value across disciplines.

One of the milestones in the development of nonlinear time series analysis was the work of Edward Lorenz in
the 1960s. Lorenz’s formulation of the famous Lorenz equations revolutionized meteorology and highlighted the
sensitivity to initial conditions, a hallmark of chaotic systems [Lor63]. This work was instrumental in guiding
researchers towards nonlinear dynamics. Concurrently, the study of fractals by Benôıt Mandelbrot in the 1970s
further contributed to the understanding of self-similarity and scaling in natural phenomena [MA79].

NTSA gained prominence in climate science during the late 20th century as researchers sought to study the
inherently nonlinear behavior of our planet’s climate system. The wide-range use of powerful computers enabled
the development of sophisticated models for climate prediction, incorporating much-needed nonlinear elements.
Climate phenomena like El Niño Southern Oscillation (ENSO), which eluded traditional linear models, became
a hotspot for NTSA research. We discuss the ENSO phenomenon in section 4.1. As climate change emerged as
a global concern, the demand for accurate, long-term predictions intensified, driving further advancements.

1.2 Climate Variability

Climate variability is a fundamental aspect of Earth’s climate system, encompassing natural fluctuations that
occur over various timescales, from seasons to millennia. Understanding and characterizing climate variability
are essential for predicting weather patterns, assessing long-term climate trends, and addressing environmental
challenges. Climate systems exhibit intricate behaviors that extend beyond superficial linear relationships.
Nonlinear time series analysis provides a powerful toolkit for investigating these complex interactions and
nonlinearities within climate time series data.

Researchers have employed NTSA techniques, including Rescaled Range Analysis (R/S) and Detrended
Fluctuation Analysis (DFA), to analyze climate time series data from diverse sources, including temperature
records, sea-level measurements, and ice-core data. These methods allow researchers to uncover long-range
correlations, persistence, and self-similarity within climate data, offering valuable insights into the Earth’s
changing climate.

1.3 Scope and Objective

Understanding climate variability is one of the most pressing challenges of our time. Our planet’s climate and
weather system comprises complex variables and underlying dynamics. Examples of such dynamics include
everything from long-term temperature shifts to weather anomalies. These seemingly random changes and
fluctuations significantly affect our ecosystems, agriculture, water resources, and, in general, human societies
everywhere.

For a long time, we have used linear models, regression, and time series analysis to understand and predict
climate variability [17; Cha05]. However, as more variables are being discovered and measured, more relation-
ships in the system surface, making it challenging to study the underlying dynamics with only linear tools,
an example of which is illustrated in [EP04]. As research questions in nonlinear dynamics develop relating to
climate change, it can be challenging to navigate through the vast number of topics and academic publications.

This paper aims to synthesize the underlying mathematical and physical principles that govern climate
variability by examining the current body of research on nonlinear time series analysis. Thus, this paper hopes
to be a primer for any reader new to the field.

Section 2 introduces foundational concepts that nonlinear time series analysis relies on, such as state space
reconstruction and different mathematical characterization methods, such as Lyapunov exponents and attrac-
tors. Section 3 will discuss nonlinear techniques that help conduct analyses that are more robust. Section
4 discusses different analysis methods used to support climate variability studies. This section helps put in
perspective some of the abstract concepts discussed in section 2. Some examples used in section 4 are models
of the ENS̃O phenomenon and the ozone layer. Section 5 discusses the predictive capabilities and limitations
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of nonlinear time series analysis. Section 6 suggests reading material for further exploration and poses some
questions that still need examining. We conclude and offer some final remarks in section 7.

1.4 Methodology

This literature review assesses the state of knowledge regarding nonlinear time series analysis and its application
to climate variability. This review’s research question is “What is the current understanding of NTSA and its
relevance in modeling and predicting climate variability or phenomena?” We implement a comprehensive search
strategy to address this question, utilizing academic databases such as Google Scholar.

A systematic two-stage screening process selected relevant literature, assessing titles and abstracts for initial
relevance and subsequent examination of full-text articles. Data extraction from the selected articles focused
on key elements such as authorship, publication year, research methodology, findings, and implications. We
analyzed the gathered literature to identify recurring patterns, research trends, and gaps in applying NTSA
to climate variability. Quality assessments considering factors such as study designs, methods, and references
weighed the reliability and relevance of the selected studies.

Some academic papers from the late 1900s cited in thousands of papers are base papers. Base papers were
early in the development of a field of study, the go-to papers in a field. Due to their extensive contributions,
we will discuss some of the base papers used in this review separately for any reader to explore more. On the
contrary, we selected some papers cited less than a hundred times. These papers are niche and refer to many
base papers to strengthen their argument or method, making them worth reading and discussing.

2 Foundations of Nonlinear Time Series Analysis

2.1 State Space Reconstruction

A state space is an abstract representation of a dynamic system’s complete condition. It is a multidimensional
space where each dimension corresponds to a variable that somehow describes the system; for example, tem-
perature measures a part of the weather. A point in the multidimensional space can tell us everything we want
to know about the system at that time. If we look at the weather app for a particular time, we can see the
temperature, humidity, chance of rain, and so on; the particular time would be the point in space we are looking
for. The variables, such as temperature, humidity, and so on, would be the dimensions of our system.

Static systems have unchanging, constant properties, while dynamic systems involve variables and changes
over time, making them inherently time-dependent and subject to evolution. We obtain multiple data points
for our discussion about NTSA as dynamic systems evolve with time. Temperature would be a series of data
points concerning the weather, a dynamic system. These series of data points are a time series, analogous
to a video that is a continuous series of pictures. When we attempt to plot these data points, they trace a
path called a trajectory. These trajectories reveal how a system changes. In dynamic systems like the weather,
we cannot perfectly measure all the internal variables because we might not know how many are present.
However, reconstructing the dynamic systems from time series can allow us to study their structure more
closely [Pac+80]. While the reconstruction may not be identical to the actual dynamics of a system, they will
have a similar structure [BK15]. This similarity is advantageous since we can confidently project our findings
from the reconstructed system onto the original system.

2.1.1 Delay-Coordinate Embedding

Reconstructing a state space from a single time series uses delay coordinate embedding. We can reconstruct a
multidimensional dynamical system from a scalar time series.

Consider a scalar measurement x, say temperature. We can construct an m-dimensional vector
−→
R (t) from

m time-delayed measurements x(t), such that

−→
R (t) = [x(t), x(t− τ), x(t− 2τ), ..., x(t− (m− 1)τ)]

where t is the time of measurement and τ is the chosen time delay. The vector
−→
R (t) represents a series of

measurements of x, temperature, in our case, over a certain time period. The time-delay variable τ represents
the intervals of these measurements.

Choosing m and τ requires serious thought. For instance, if τ has a small value, the correlation in the m-
coordinate data may be incredibly strong. In the opposite case of τ being large, there might not be a significant
correlation worth studying. Continuing our temperature example, say that we want to analyze the temperature
over the last week to deduce a pattern. For this, we take temperature measurements at particular intervals (τ).
We do not have enough data to form a correlation if we take one temperature measurement daily for seven days.
If we take a data point every second, there are too many patterns to analyze and make practical, generalized
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deductions. We choose an in-between case: perhaps a measurement every thirty minutes or hour. This will
result in a more manageable and generalized time series.

In the vector space
−→
R (t), two implicit assumptions can cause problems in practice. First, the time series is

evenly spaced. One way to even out irregular time series is through interpolation, but then we cannot study the
actual dynamics of the system. Second, the measurement function produces a smooth function of the original
system. We expect reconstruction not to be a replica; thus, there will be rough edges in the function that
would have been averaged out with more variables to fill in our knowledge gaps. To mitigate these rough edges,
repeating the analysis with different measurements and confirming consistent results provides a smooth function
and confidence in results.

2.1.2 Parameter Estimation

While we theoretically know what we need for the values τ , the time delay, and m, the embedding dimension,
it can be difficult to obtain them in practice. While analyzing data, we do not always know the dimensions of
the entire system. Thus, estimating these parameters is a significant challenge in delay-coordinate embedding.
Selecting the time delay variable τ is tricky because there is no universally optimal value, and it often requires
trial and error. Overestimating or underestimating τ can lead to information loss or sensitivity to noise, and
noise in the data further complicates the selection process. Researchers may use heuristics and data-driven
approaches, but nonlinear time series analysis remains a challenging and data-dependent task.

Generally, the τ value should be reasonably small to avoid other problems, such as a reconstructed attractor’s
(see section 2.2.1 for attractors) trajectories overlap or folding in on themselves, making it difficult to study.
There are some strategies to calculate τ , but none are universal. One strategy outlined by Bradley and Kantz
[BK15] is computing a statistic that measures the independence of τ -separated points in the time series.

After choosing τ , the next step is determining the embedding dimension. The False Near Neighbor (FNN)
algorithm proposed by Kennel et al. gives an approach to finding an optimal dimension [KBA92a].

We have data points but are unsure how many dimensions we need to represent them accurately, so we start
with a small guess. Say we start with a two-dimensional (2D) space. In this space, we compute the nearest
neighbor for each data point. Then, add a dimension, a 3D space. If the relationship between data points
changes, as indicated in changes to the nearest neighbor calculations, then the 2D space was not enough to
represent accurately the data. Then, we add another dimension and repeat the process in the 4D space. We do
this until relationship differences stabilize or go lower than a threshold. The FNN algorithm suggests adding
extra dimensions [RM97].

2.2 Mathematical Characterization

2.2.1 Attractors

Attractors are mathematical constructs that provide insight into the long-term evolution of dynamic systems.
They unveil recurring patterns and trajectories that govern their behavior over time. An attractor is a subset of
a system’s state space to which a system’s trajectories converge or stabilize. There are three kinds of attractors:

1. Fixed-point attractors are equilibrium states where a system converges to a single stable point, representing
rest.

2. Periodic attractors are stable but not at rest. These attractors represent repeating patterns or cycles,
such as periodic orbits.

3. Strange attractors are complex, non-repeating attractors found in chaotic systems. Their behavior can
appear random but is deterministic.

Strange attractors are a hallmark of chaos and exhibit extreme sensitivity to initial conditions. Turbulence is
a prime example of such behavior. When we observe turbulent motion, there is motion at multiple frequencies,
meaning that many kinds of motion, fast and slow, occur simultaneously. In turbulence, a nonperiodic or
periodic motion with an infinite period was observed [TE89]. It is akin to attempting to predict the path of a
leaf caught in the wind; while there may be some semblance of repetition, the prediction periods are practically
beyond our consideration.

It became evident that a simple dynamical system could not produce such a motion. Lorenz first notices a
system of this kind [Lor63]. The system gives an approximate description of a fluid layer heated from below.
The Lorenz attractor utilizes the equations below

dx/dt = −ax+ ay
dy/dt = −xz + bx− y
dz/dt = −xy − cz
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where x is proportional to the intensity of the convective motion, y is proportional to the horizontal temperature
variation, z is proportional to the vertical temperature variation, and a, b, and c are constants. Since the curve
is deterministic, we can plot these equations.

Like most concepts in this paper, we use attractors to study the weather and climate. In their paper
about attractors and the weather, Tsonis and Elsner note that while the atmosphere is chaotic and difficult
to reconstruct, its evolution is limited and confined to a specific area that the attractor occupies [TE89]. This
limits our field of study, saving time and computational power.

2.2.2 Lyapunov Exponents

Lyapunov exponents, named after the Russian mathematician Aleksandr Lyapunov, offer valuable insights into
the behavior of dynamic systems. These values quantify the sensitivity of a dynamical system to its initial
conditions. A positive largest Lyapunov exponent, λ1 > 0, signifies chaotic behavior within the system. In
such cases, a minor alteration in the initial conditions can lead to a substantial divergence in the trajectories.
Conversely, a largest negative Lyapunov exponent, λ1 < 0, suggests stability. Finally, when the largest Lyapunov
exponent is 0, λ1 = 0, the system is considered marginally stable or neutral; changes in initial conditions have
limited long-term influence.

There are limitations to relying solely on Lyapunov exponents. They assume that a system is continuous,
deterministic, and that we know the underlying equations. Deterministic means a system’s future state or
outcome is entirely predictable based on its initial conditions and known rules or laws. Real-world systems may
deviate from these assumptions frequently. More discussion about Lyapunov exponents is in Dingwell’s work
[Din06].

There are many algorithms to compute Lyapunov exponents. One widely used algorithm to calculate the
exponents is the Rosenstein algorithm [RCD93]. This algorithm operates in the following steps:

1. Embedding: To analyze the system’s dynamics, first, we reconstruct the state space using delay-coordinate
embedding.

2. Nearest neighbor search: For each point in this new data set, we calculate the distance to all other points
and find the nearest neighbor. For each state Xi, the closest neighbor Xj in phase space greater than the
time series’ mean period µ, is eligible, Xe. The distance is calculated as de = ||Xi −Xi||, where i− e > µ.

3. Logarithmic growth: As we iterate through the time series data, we track how the distance between
data points evolves. In a chaotic system, nearby points tend to diverge over time, and we measure this
divergence as a function of time.

4. Estimation: We estimate the largest Lyapunov exponent λ by analyzing the rate of this divergence. It
quantifies how quickly nearby trajectories in the phase space move apart. In a chaotic system, this rate
is positive, indicating sensitive dependence on initial conditions.

5. Finding the exponent: We analyze the growth of the distances over time and take the slope of a graph
showing the natural logarithm of these distances. The slope represents the largest Lyapunov exponent.

Wolf et al. elaborate on various methods to calculate Lyapunov exponents, see [Wol+85].

2.2.3 Fractals

Fractals are abstract geometric shapes or structures that exhibit self-similarity. If you magnify a fractal to
observe a part of the structure, it will look identical to the overarching structure, which happens no matter how
much one zooms in; this property is self-similarity. Fractals have a way of appearing naturally all around us
[Bar+88]. In nonlinear time series analysis, fractals and their analysis play an important role in characterizing
self-similarity found in turbulent systems such as the climate [Sre91].

Fractal analysis helps us identify whether observed behaviors correlate with the rest of the structure. Thus,
identifying discrepancies becomes a slightly more manageable task. Fractal dimensions provide insight into
these structures. Unlike traditional geometry, fractal dimensions are not confined to integer values. Instead,
they quantify the complexity of a pattern or structure. For instance, the renowned Koch snowflake boasts a
fractal dimension of 1.2619.

The Hurst exponent, H, represents the ’memory’ or ’persistence’ of time series data. Imagine a series of
numbers that goes up and down; the Hurst exponent tells us whether these ups and downs are just random
jumps or if there’s a hidden pattern that keeps pushing things in the same direction. We can link the Hurst
exponent to fractals through self-similarity and long-range dependence.

Fractals are complex shapes that display self-similarity, with similar patterns repeating at various scales.
Similarly, the Hurst exponent quantifies how time series data exhibits similar patterns at different time scales.
Moreover, fractals and the Hurst exponent are associated with long-range dependence, where events or data
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points at one location can significantly affect those at distant points. This connection emphasizes the role of
the Hurst exponent in characterizing self-similarity and long-range dependence in data, much like how fractals
exhibit these properties in geometric shapes.

A high Hurst exponent suggests strong long-term dependencies or trends in the data, while a low exponent
implies more randomness. This concept is particularly valuable when examining time series data in fields like
climate science or finance, where understanding patterns and trends over time is crucial. We illustrate this
concept in a more detailed manner in section 4.2.1.

3 Nonlinear Techniques

3.1 Surrogate Data

Before nonlinear time series analysis is used, we must determine whether a dynamic system is chaotic. Detecting
chaotic behavior of a system within time series data can be challenging, mainly when dealing with short and noisy
time series data. These circumstances can confound dimension estimates and Lyapunov exponent measurements,
potentially leading to false conclusions regarding the presence of chaotic behavior.

To address this challenge, statistical hypothesis testing is a valuable tool. It allows us to assess whether
the observed time-series data is more likely to represent nonlinear, chaotic dynamics or simply random noise.
This is crucial, as finite-length time series can originate either from a noise process or from a low-dimensional
deterministic process [The+92].

Focusing on detecting nonlinear structures within time series data is more practical than characterizing
them comprehensively. Estimating the dimension of the system and interpreting its value is computationally
demanding and prone to errors, primarily because we might not have complete knowledge of the underlying
dynamics.

Statistical hypothesis testing involves formulating a null hypothesis, against which we compare our obser-
vations using a specific statistic. The goal is to reject the null hypothesis by demonstrating that the statistic
quantifies a property of the time series data that is inconsistent with the null hypothesis. In nonlinear time
series analysis, test statistics’ probability distribution under a simple null hypothesis is usually unknown. We
turn to surrogate data to perform hypothesis testing effectively.

We generate surrogate data carefully to mimic the conditions of the null hypothesis while retaining certain
characteristics of the original time series, such as its statistical properties such as mean and variance. Surrogate
data helps mitigate the risk of false positives in chaotic dynamics detection. Without surrogate data, noise or
random fluctuations in the data might erroneously lead to the conclusion of chaos. Surrogate data provides a
baseline for randomness, making it less likely to misinterpret noise as chaos. We can generate multiple sets of
surrogate data to assess the robustness of conclusions. If statistical tests consistently reject the null hypothesis
across various surrogate datasets, it strengthens the confidence in the presence of nonlinearity and chaotic
dynamics in the original data. See Theiler et al. and Schreiber and Schmitz [The+92; SS00] for an elaborate
discussion on algorithms and null hypotheses concerning surrogate data and Lucio et al. [LVR12] for recent
developments.

3.2 Recurrence Plots

Recurrence plots (RPs) are data analysis tools that help us understand time series data better through two-
dimensional visualization, first introduced by Eckmann et al [EKR+95]. These plots are particularly useful
because they allow us to spot repeating patterns and behaviors often occurring in complex systems. Imagine
them as magnifying glasses for time series data, helping us zoom in on those recurrent phenomena that might
not be immediately obvious. One of their most valuable applications is in studying chaotic systems—those
systems that seem unpredictable at first glance. Traditional methods of analyzing time series data may struggle
with chaos, but recurrence plots shine here. They help researchers dig deep into the system’s dynamics, pinpoint
transitions between different states, and reveal the underlying attractors.

We use the following steps to create an RP.

1. Consider a time series. We use delay-coordinate embedding on it to reconstruct it into a multidimensional
space.

2. We construct a recurrent matrix Rij(ϵ), where ϵ is a pre-chosen threshold value to determine how close a
pair of points are. The matrix is generated as follows

Rij(ϵ) = θ(ϵ− ||−→x i −−→x j ||)

Here −→x represents a randomly chosen data point. The distance between two points is represented by
−→x i − −→x j . If the chosen ϵ is greater than the distance, it is close. The θ function assigns 1 if the points
are close, and 0 if not.
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3. We plot this recurrent matrix. A value of 1 is a black dot and a value of 0 is white.

Recurrence plots look like square matrices, and each cell in the matrix corresponds to a pair of time points
from the original time series. If there is a dot or a specific color in a cell, it means that the data points at those
time points are recurrent, based on the threshold, ϵ we set. The diagonal line running from the top-left to the
bottom-right of the matrix represents self-recurrences—instances when a state or pattern repeats itself. When
you see clusters of dots or patterns close together in the plot, it indicates areas of frequent recurrence. These
clusters often represent stable behaviors or attractors within the system. Conversely, when you notice gaps or
empty regions in the plot, it means there are periods when the system transitions between different states or
behaviors.

4 Applications to Climate Variability

4.1 El Niño-Southern Oscillation

El Niño-Southern Oscillation, or ENSO, is a disruption in winds and sea surface temperatures (SST) affecting
tropical and subtropical climates in the Pacific Ocean every few years. The British scientist Sir Gilbert Walker
discovered this through a difference in barometer readings while on an assignment in India. Sir Walker noticed
that a pressure rise in the east resulted in a drop in the west and vice versa. Walker coined the term Southern
Oscillation to capture these dramatic fluctuations. ENSO links to many health concerns in South Asia, with a
few studies in Bangladesh.

Its oscillatory behavior characterizes ENSO, alternating between two primary phases: El Niño and La Niña.
El Niño is the warming phase of the sea; it weakens trade winds and alters rainfall patterns in various regions
worldwide. La Niña is the cooling phase. La Niña intensifies trade wings and can cause the opposite effects in
rainfall patterns as El Niño. The modeling of these phases and their transitions has been at the intersection of
climate variability and nonlinear time series analysis. This section will review a few methods used to capture
this phenomenon.

4.1.1 Smooth Transition Autoregressive Model

Autoregression, a prevalent time series modeling technique, relies on past observations to predict future values.
However, this method inherently assumes that the future will closely resemble the past; potentially failing to
account for ENSO’s abrupt changes or rapid developments. The Smooth Transition Autoregressive (STAR)
time series method represents an advanced iteration of traditional autoregressive models. Teräsvirta devised
this method that is suitable for series with cyclical variations and turbulent periods, such as ENSO [TA92].
Unlike conventional autoregressive models, STAR models incorporate a mechanism for adapting to evolving
conditions, rendering them highly effective for modeling intricate time series data.

A model for ENSO, as described by Hall et al. [HST01], is:

yt = π10 + π′
1wt + (π20 + π′

2wt)F (yt−d) + ut

where πj = (πj1, ..., πjp)
′; j = 1, 2;wt = (yt−1, ..., yt−p)

′; and ut ∼ NID(o, σ2
u).

The left-hand side of the equality is what we wish to model, denoted by yt. When there are no transitions,
the intercepts of the function are π10 and π20. The term π′

1wt is an autoregressive component. It is the dot
product of the lagged values wt and their weights π′

1. This captures the dependence of yt on its past values.
Similarly, π′

2wt is another autoregressive component.
The transition function is F (yt−d); this is the primary component of the mechanism that makes this model

more effective for time series. A lagged value denoted by yt−d passes through a logistic or exponential function
to enable a smooth transition between regimes. In our equation above, the terms π′

1wt and π′
2wt represent the

behavior of the time series in different regimes. The final term ut represents the random variability or noise in
the data.

In the STAR models, the transition function is crucial. The logistic transition function of order p is:

F (yt−d) = (1 + e−γL(y(t−d)−cL))−1

where γL > 0. The model is called logistic STAR or LSTAR when this function is used. The positive parameter
γL determines the steepness of the transition. A higher value translates to a more abrupt transition, and vice
versa. The critical point cL is when the transition occurs.

In the exponent, if (yt−d − cL) = 0, then the function’s output is 0.5, indicating an equal probability of
transitioning between states. The function F (yt−d) returns a value in the range [0,1].

The exponential transition function of order is given by

F (yt−d) = 1− e−γE(y(t−d)−cE)2
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where γE > 0. The model is called exponential STAR or ESTAR when this function is used. γE is this function’s
equivalent of γL from the LSTAR transition function. The parameter cE represents the center or location of
the transition along yt−d. For more discussion of this model, see [TA92; Ter94] and references within.

Employing the LSTAR model described earlier, Hall et al. achieved a deeper comprehension of turbulent
disturbances than the model’s linear counterparts did. However, due to its lack of stability, the model is limited
in its forecasting capabilities, although it can still provide short-term predictions. The authors acknowledged the
inherent complexity of systems like ENSO and suggested that augmenting the model with additional variables
could enhance its performance.

4.1.2 Singular Spectrum Analysis

It is almost impossible to obtain the perfect time series. More often than not, we can only study short and noisy
time series that we cannot interpret with conventional tools. Thus, we use singular spectrum analysis (SSA)
to extract as much reliable information as possible without prior knowledge about the underlying system. This
property is unique to SSA and is called signal-to-noise enhancement.

SSA begins by representing the time series as a trajectory in a high-dimensional vector space. This represen-
tation involves creating overlapping views of the time series data utilizing a sliding window, a moving frame that
covers a time series segment at each step. We do this by using the embedding and delay-coordinate techniques
discussed earlier. After reconstruction, singular value decomposition techniques decompose the trajectory ma-
trix into its almost-fundamental components. These components include trends, oscillatory patterns, and noise.
Then, we can attempt to isolate the noise and mitigate a significant amount of its influence on the time series
data. We can highlight other components; for instance, we can isolate a particular pattern and reconstruct the
data influenced by identified pattern. See [Ghi+02] and references therein for an elaborate discussion on more
spectral methods in nonlinear time series and nonlinear dynamics.

Once SSA breaks down a time series into different components, one can compare these components with
components of other time series to find a correlation. One study compared time series data from the ENSO
phenomenon and cholera frequency in Bangladesh [Pas+00]. Their study found significant similarities in the
dominant frequency of interannual variability of cholera cases and ENSO. This led to the conclusion that ENSO,
and possibly other climate variability phenomena, influenced how cholera grew in Bangladesh.

Similar applications of SSA are in other climatic time series data as well [VG89; MVG98]. McGregor and
Ebi did another elaborate study linking ENSO to various health in various parts of the world in [ME18].

4.2 Ozone Layer

The ozone (O3) layer is critical to Earth’s atmosphere located in the stratosphere. The ozone layer is a protective
layer that absorbs and filters out a significant portion of the sun’s harmful ultraviolet radiation. Excessive
radiation harms aquatic life and can cause adverse effects on humans, such as skin cancer. The discovery of the
ozone layer’s importance and its depletion led to international efforts to preserve the layer’s vitality, such as the
Montreal Protocol [Vel+07].

The layer’s depletion occurred over time; thus, various methods from time series analysis offered insights
into understanding the ozone layer’s decline and improvement. We will look at a few of those methods.

4.2.1 Rescaled Range Analysis

Rescaled Range Analysis (R/S), also known as the Hurst exponent analysis, analyzes and characterizes the
long-term memory or persistence in time series data. British hydrologist Harold Hurst developed this analysis
to study the rate of river flow [Hur51]. This method uses a unique value called the R/S statistic.

We can compute the R/S statistic by dividing the range of the cumulative sum of the data by its standard
deviation. To assess the memory in the data after obtaining our time series, we compute the R/S statistic for
different window sizes in the data. We plot the various computed R/S statistics against their window sizes on
a log-log scale. Finally, a linear regression line on the log-log plot estimates the Hurst exponent, H. If H > 0.5,
future values will likely follow past observed trends. If H = 0.5, then it is random. If H < 0.5, future values
might behave conversely to the past observed values, referred to as anti-persistence. There can be different
thresholds for different studies.

A study by Jan et al. about the ozone layer fluctuation in Pakistan used this analysis method [Jan+14].
The study’s authors found anti-persistence, indicating that the ozone layer’s future would behave oppositely
as it did in the past. This particular study used time series data from 1970 - 2013. In the period 1970 -
1990, humanity was heavily emitting chemicals that harmed the ozone layer. Until the late 2000s, this harmful
emission continued in decreasing amounts. This implies that the study found that the ozone layer would recover
in the future. The consensus corroborates this result.
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On the topic of the ozone layer, another recent study by Ball et al. talks about a decline in the lower
stratospheric ozone that offsets the recovery in the ozone layer [Bal+18]. With more attention paid to other
regions of the atmospheric layers, this technique with other time series analysis methods will provide more
insight into the underlying behavior of ozone’s presence in other regions.

4.2.2 Detrended Fluctuation Analysis

This method quantifies the presence of long-range correlations and self-similarity. Detrended Fluctuation Anal-
ysis (DFA) has been used in finance [Kri+10], physical sciences, and for our purposes, in climate-related work
as well [Jan+14]. Peng et al. introduced DFA in 1994 [Pen+94]. In this method, the obtained exponent is
similar to the Hurst exponent. The key difference between R/S and DFA is that DFA can be used for systems
whose underlying dynamics are non-stationary.

The data preparation method is similar to R/S analysis. However, when we divide the data, we do it into
various segments with no overlap, referred to as boxes or windows. Each segment will typically represent a local
trend within the time series. Then, the local trend is fitted with a polynomial equation. The polynomial is
usually linear or quadratic. The estimated local trend is subtracted from the original data points in each segment,
leaving residuals or fluctuations behind, called detrending. The residuals’ root-mean-square (RMS) fluctuations
are calculated for each segment. These RMS fluctuation values represent the magnitude of fluctuations. The
RMS fluctuations from each segment are averaged; this provides the overall variability in the time series data.
Similarly, we perform DFA for different box sizes.

Like R/S analysis, we plot the results on a log-log plot. The slope of the regression analysis, sometimes
denoted as α, is the desired exponent. We use α = 0.5 to suggest a lack of correlation. Above and below α = 0.5
correspond to positive and negative correlations.

5 Predictive Capabilities and Limitations

Nonlinear dynamics has a rich history of prediction strategies based on state-space models. These strategies
rely on the reconstruction techniques to predict scalar time series data. One notable example is Lorenz’s Method
of Analogues, which identifies the nearest neighbor in the state-space trajectory and uses its forward path for
forecasting [Lor69]. This method works effectively in reconstructed state spaces.

Over the years, with growing interest, researchers have developed various creative strategies for predicting
the future behavior of nonlinear dynamical systems. These approaches involve building local models in portions
of the reconstructed state space to make predictions. Notably, prediction methods do not always require
perfect embeddings to be successful. Even reconstructions that do not meet the theoretical requirements on the
embedding dimension can yield accurate predictions, especially when dealing with noisy data. It is essential
to avoid over-optimizing predictors to prevent overfitting; when a model fits the training data too closely, it
performs poorly on new, unseen data.

Nonlinear time-series analysis in reconstructed state spaces is a powerful approach but has practical limita-
tions. For instance, it typically assumes infinite noise-free observations, which can be problematic in real-world
scenarios with statistical properties changing through time, nonstationarity, or limited data. The system’s level
of complexity can be problematic, especially when dealing with systems with large spatial dimensions. Noise
effects scale with dimension and filtering and subsequence analysis can help.

The presence of noise in real-world signals is a significant challenge [Cen+00]. Noise can take various forms,
including additive random processes and other types of contamination. Understanding the complexity of the
underlying process rather than making this distinction is the primary focus in most applications. Filtering noise
from nonlinear time-series data is a complex task. Conventional filtering techniques that use specific frequency
cutoffs might struggle to handle chaotic signals with wide-ranging frequency patterns effectively. When trying
to reduce noise effectively, it is essential to consider the distinct characteristics of nonlinear dynamics, like stable
and unstable pathways and attractors’ structure or topology.

6 Further Exploration

6.1 Some Base Papers

For any reader who wants to start their journey into nonlinear time series analysis, the following are a few
papers that provide a brilliant introduction. There are more base papers than the four listed below; the four
below are to be the first step before diving deep into the field.

Nonlinear Time-Series Analysis Revisited
See [BK15]. Bradley and Kantz wrote a concise review in 2015. Kantz was also one of the authors of a book,
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Nonlinear Time Series Analysis, with Schreiber in 2004. This paper offers a concise but sufficiently detailed
introduction to multiple aspects of nonlinear time series analysis. This paper effectively explains the functions
of NTSA and the practical requirements to implement NTSA. We examined this paper in the initial stages of
this review. References used in this paper are also robust papers that offer a holistic view of the field.

Deterministic Nonperiodic Flow
See [Lor63]. This 1963 paper fundamentally transformed our understanding of complex systems by introducing
the concept of the “butterfly effect,” where small initial changes can lead to dramatically different outcomes.
Lorenz’s work unveiled the deterministic chaos exhibited by certain nonlinear systems, exemplified by the Lorenz
attractor, which highlighted non-periodic yet bounded behavior. This groundbreaking paper laid the foundation
for chaos theory, demonstrating that deterministic systems can generate seemingly random and unpredictable
dynamics, affecting fields from meteorology to physics and economics. This is also a base paper for nonlinear
dynamics as a whole.

Geometry from a time series
See [Pac+80]. This paper presents an approach to analyze and understand complex dynamical systems based on
the reconstruction of the system’s underlying geometry from a single time series of data points; the foundation
for what is now known as the method of “attractor reconstruction” or “phase space reconstruction.” The
authors demonstrate how to recover the geometric properties of a chaotic system, including its attractor and
dimensionality, from observational data, enabling the characterization and prediction of complex, nonlinear
behavior. This paper is essential for anyone interested in chaos theory, nonlinear dynamics, and the practical
applications of these concepts in fields ranging from physics to biology and engineering. It provides valuable
insights into the geometric interpretation of time series data.

Determining embedding dimension for phase-space reconstruction using a geometrical construc-
tion
See [KBA92a]. This paper presents a novel geometric approach to tackle the crucial problem of estimating the
appropriate embedding dimension when reconstructing phase space from time series data. Reading this paper
also results in a better understanding of how dimensions come into play in their role in time series analysis.

6.2 Current Research

Machine Learning and Neural Networks
Machine learning, particularly neural networks, has emerged as a powerful nonlinear time series analysis tool.
Neural networks, with their ability to capture complex relationships in data, have been instrumental in modeling
and forecasting nonlinear time series. They excel in extracting intricate patterns and dependencies that might
be challenging to capture with traditional statistical methods. Recurrent neural networks (RNNs) and Long
Short-Term Memory (LSTM) networks, particularly, have demonstrated exceptional performance in handling
time-dependent data [Don+10; Lin+21]. Researchers leverage these neural architectures to predict chaotic
behavior, recognize hidden dynamics, and analyze complex systems in diverse fields from finance to climate
science. The adaptability of machine learning and neural networks to nonlinear time series analysis expands our
understanding of complex temporal data, enabling more accurate predictions and valuable insights into dynamic
systems. With the rise of research in artificial intelligence techniques, models integrating various methods will
also gain popularity.

Network Theory
By representing time series data as nodes in a network and connecting them based on specific relationships or
dependencies, network theory allows researchers to uncover hidden patterns and structural characteristics in
dynamic systems. This approach is used to understand complex interactions, synchronization, and emergent
behaviors within various domains including biology, finance, and social sciences. Researchers employ tools
from network theory to model and analyze the underlying structure of time series data, leading to insights
into system dynamics, identifying critical nodes or elements, and predicting potential disruptions or critical
transitions. Integrating network theory with nonlinear time series analysis provides a robust framework for
studying dynamic data’s intricate and often hidden interdependencies, facilitating a deeper understanding of
complex systems and their behaviors. An elaborate work on network approaches to nonlinear time series analysis
is by Zou et al. in [Zou+19].

6.3 Some Limitations to Explore

Noise Filtering
Advancing research to mitigate noise from nonlinear time series data is a critical endeavor with broad im-
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plications. Noise from measurement errors, environmental factors, or inherent system variability can obscure
meaningful patterns and distort the understanding of complex systems. In today’s data-driven world, where
information is critical to decision-making, extracting reliable insights from complex, noisy data is paramount.
Further research into various techniques to decrease noise’s impact would benefit NTSA and other fields that
heavily rely on data. A 1993 survey on noise reduction methods by Kostelich and Schreiber is in [KS93]. Since
then, a significant synthesis or survey has not been done. A 1991 paper on state-space reconstruction in the
presence of noise by Casdagli et al. is in [Cas+91].

Dimension Estimating
Another area to explore further is the development of robust and scalable techniques for dimensionality reduction
and feature selection. As datasets grow in size and complexity, there is an increasing need for methods to distill
the most relevant information from the data efficiently. Researchers should focus on refining existing techniques
and creating innovative algorithms to address the dimensionality challenge, as this directly affects the efficiency
and interpretability of models in various fields.

Some current, widely-used methods include the Sequential Monte Carlo (SMC) [Kan+09] and geometrical
construction [KBA92b].

Lack of Climate Science Application
Nonlinear time series analysis has predominantly found application in finance, such as currency exchange rates
and stock price forecasting, but its under-explored potential in climate science holds the promise of significant
progress. While it has revolutionized financial prediction by capturing intricate market behaviors, its adoption
in climate science remains limited. We can obtain similar results and accuracy in climate science by applying
nonlinear time series analysis to climate data.

While compiling literature for this review, it was challenging to identify recent, groundbreaking nonlinear
time series analysis models in climate variability compared to their counterparts in finance. We believe that,
with similar experiments and studies in climate science, we will learn more correlations between data that we
might not currently know.

7 Conclusion and Discussion

Nonlinear time series analysis (NTSA) has been an informal concept for as long as humans have contemplated
events unfolding over time. However, it is only recently formalized as a field of study, and even more so, in
climate science. This review has navigated the intricacies of NTSA and its applications in climate variability,
emphasizing its pivotal role in understanding complex climate systems.

What this review has highlighted is the significant presence of nonlinearity in climate dynamics, which
challenges traditional linear models. The mathematical foundations of chaos theory, fractals, and Lyapunov
exponents equip researchers with tools to quantify chaos and fathom climate data’s self-similarity and scaling
properties. Techniques such as state-space reconstructions and delay coordinate embedding prove invaluable in
extracting insights from climate time series data.

Looking ahead, the future of NTSA appears promising, with potential integration with machine learning
and improved data visualization. However, it is not without challenges, including data quality, computational
complexity, and model interpretability, which remain crucial considerations. Collaboration across diverse fields
promises innovation and practical solutions for real-world issues. NTSA’s prominence, having proven its worth in
finance-related industries, is set to expand further, offering valuable methodologies for climate-related research.

The enduring significance of nonlinear time series analysis resides in its core principle of interpreting data’s
temporal evolution. NTSA’s ability to distill complex data into its essential components unveils concealed infor-
mation and patterns. Moreover, its capacity to establish connections between these patterns and other datasets
reveals relationships that might otherwise remain hidden. This enduring utility guarantees that nonlinear time
series analysis will continue to be a valuable tool, contributing to our understanding of complex systems and
data.
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